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Abstract Attempting to put meaningful numbers to portfolio risks is challenging. Conventional 
risk measures are considered often not to fully capture all risks inherent in a portfolio, particularly 
under difficult market conditions. Under such conditions stress-testing against artificial  
scenarios may help identify and quantify risks within a portfolio. Stress-tests also help reassure  
a portfolio or risk manager as to how a portfolio might respond to specific concerns.
This paper investigates an example of stress-testing a portfolio of conventional assets against 
market risks using artificial scenarios based around changes to the portfolio variance-covariance 
matrix. Hypothetical variance-covariance matrix stress-tests include making changes to 
correlations between assets to explore impacts on portfolio risks. Portfolio correlations, however, 
cannot be changed arbitrarily to reflect a risk manager’s concerns without running the risk of 
implausible stressed returns and variance-covariance matrices that are not positive semi-definite. 
Different methods have been proposed in the literature to overcome this. This paper  
applies two such methods to a portfolio of four assets with the aim of illustrating the processes 
involved as well as drawing out differences in the approaches, enabling a discussion of their 
strengths and weaknesses.
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INTRODUCTION
Portfolio stress-testing attempts to identify and 
quantify risks that are not well captured by more 
conventional measures, particularly regarding the 
impact on a portfolio of difficult market conditions. 
This paper investigates portfolio stress-testing using 
artificial scenarios known as hypothetical variance-
covariance matrix stress-testing, aiming to provide 
straightforward examples that practitioners can 
follow and reproduce while drawing out differences 
in the approaches and discussing strengths and 
weaknesses.1

Portfolio managers may use stress-testing to 
explore portfolio downside risks under difficult 
(‘stressed’) conditions. Stress-testing cannot 
guarantee the identification of actual impacts on 
a portfolio of future events, but provides another 
tool in the risk manager’s armoury. Stress-tests 
are designed to determine how a portfolio might 
respond to adverse developments, including portfolio 
allocation,2 and detecting weak spots early, thus 
facilitating preventative action, typically focusing on 
key risks such as market risk, credit risk and liquidity 
risk.3 
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Stress-testing covers a range of methodologies.4 
For current purposes it is sufficient to regard 
stress-tests as being either based on historical data 
(‘historical stress-tests’) or invented scenarios 
(‘artificial stress-tests’).5 

One artificial, hypothetical stress-test adjusts the 
variance-covariance matrix of an asset portfolio to 
explore the impact that some anticipated change to 
asset relationships may have on overall portfolio risk. 

As stress-testing tends to be an ad hoc practical 
activity rather than theoretically based,6 a balance 
between art and science is required. Imagining 
dangerous scenarios is followed by efforts to examine 
their portfolio impacts. Determination of scenarios 
to be explored, and the magnitudes of anticipated 
changes in relationships between assets requires 
judgment, although the quantification of scenario 
impacts can be more scientific. Scenario selection 
depends on assumptions, which should broadly be 
regarded as ‘unlikely but plausible’.6 

HYPOTHETICAL STRESS-TESTING 
USING THE VARIANCE-COVARIANCE 
MATRIX
Volatility and value-at-risk (VaR) are often used to 
quantify risk; diversification through de-correlated 
assets reduces portfolio volatility and parametric 
VaR. Accepting the intuition that correlations 
often increase during market crashes,7 to stress-test 
diversification one may increase correlations to 
quantify the impact this would have on portfolio 
risk. This encapsulates much of the logic behind 
variance-covariance matrix stress-testing; increased 
correlations are expected to increase portfolio 
volatility and VaR. The current paper focuses 
primarily on the correlation aspect. 

For a multi-asset portfolio with volatility matrix8 v, 
the correlation matrix R yields the variance-
covariance matrix S = vRv. The asset weight vector w  

gives the portfolio variance wTSw = σ 2, and portfolio 
parametric VaR% = |−N σδ t1/2|, where N is the 
number of standard deviations for the confidence 
level required. Increasing both asset volatilities and 
correlations ref lects some stressed scenario. 

The stressed portfolio volatility can be used 
to obtain a parametric VaR; although common 
practice suggests applying a multiplier of four 

to the portfolio volatility9 to obtain the stressed 
parametric VaR.

We cannot, however, modify the correlation 
matrix arbitrarily. Some combinations of correlations 
generate implausible stressed returns and variance-
covariance matrices that are not positive semi-
definite, meaning that negative variances can arise. 
Taking a correlation matrix from a stressed historical 
period avoids this, but makes the stress-test like a 
historical scenario, and may not explore correlations 
of primary concern. Alternatively, mathematical 
techniques can be used to construct the correlation 
matrix appropriately. Generally selected changes are 
made to some elements in the correlation matrix, 
while no view is expressed on the value of remaining 
matrix elements, which presumably should either 
be left unchanged, or else changed minimally. 
Rebonato and Jackel2,10 observe that some methods 
have potentially undesirable side-effects such 
changing non-selected matrix elements. Methods 
may also require a pre-existing well-defined positive 
semi-definite matrix which is iteratively modified 
towards some target matrix. Clearly determination 
of an initial well-defined matrix may be a drawback, 
even if the potential slowness of iterative procedures 
may be mitigated by increasing computing power. 
Rebonato and Jackel propose a method that 
minimises an error measure to ensure that targeted 
elements are changed as desired while non-targeted 
elements are changed as little as possible. Although 
such an error measure is not formally used in the 
current investigation, the idea captures the desire 
to change non-selected matrix elements minimally. 
Higham11 proposes minimising the weighted 
Frobenius norm as an error measure, the weights 
permitting an expression of the degree of confidence 
in different elements of the target correlation matrix. 
Turkay, Epperlein and Christofides12 present the 
exact bounds for perturbing a single element in the 
matrix while keeping it positive definite and propose 
an iterative method to stress a group of correlations. 

Two mathematical approaches are discussed here, 
which together with the detailed worked examples 
should prove helpful for a practitioner seeking to 
better understand the methods used. The side-effect 
of changes to non-selected correlations is illustrated 
as well as the desire to target selected correlations 
to different values while only minimally changing 
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the others. The methods presented in the worked 
examples may be used by a practitioner in their own 
right, or else as an introduction to some of the other 
approaches discussed above. 

If return histories on portfolio assets are available, 
the correlation matrix can be revised following 
Finger.9,13 Correlations are adjusted by modifying 
selected return vectors with rescaling if original asset 
variances are to be unchanged. Not only are targeted 
correlations changed, but also other correlations in 
the same matrix rows and columns. Numpacharoen 
and Bunwong (N&B)14 propose an alternative 
whereby the correlation matrix is adjusted directly. 
Cholesky decomposition ensures that a positive semi-
definite correlation matrix is obtained, correlations 
are represented using trigonometrical functions and 
changes are made in correlative angles.15 

PORTFOLIO DATA
The two approaches were explored using a four 
asset portfolio. Although small by asset manager 
standards, the limited number of assets is selected so 
that thoroughly worked examples can be presented. 
A correlation matrix was derived and selected 
correlations changed to explore their impacts. Given 
the manipulations to returns required by Finger’s 
method,13 a further simplification is made, with 
analysis conducted on just 12-monthly returns. This 

is inadequate for a meaningful formal risk analysis, 
but allows presentation of the results so that the 
reader can reproduce the examples shown. 

Data covering the period to the end of August 
2015 were used, which include a Chinese equity 
market correction. The assets were represented by 
indices and one ETF16 with returns extracted from 
Yahoo Finance.17

(1) UK fixed interest: Lyxor ETF iBoxx GBP Gilts 
in GBP, denoted UK bonds, UKB or BD.

(2) UK equity: FTSE All-Share index, in GBP, 
denoted UK equity, or UK.

(3) US equity: S&P 500 index, in US$, denoted US 
equity, or US.

(4) Chinese equity: Shanghi Composite Index, in 
CNY, denoted CH equity, or CH.

Exchange rates to convert the US$ and CNY 
denominated indices into GBP were obtained from 
Oanda.18 Use of publically available data sources such 
as Yahoo Finance and Oanda permits the reader to 
reproduce the analysis.19 

The analysis period comprised monthly data from 
30th April, 2014 to 31st August, 2015. This period 
is somewhat short with rather arbitrary start and 
end dates, but sufficient to demonstrate the methods 
used, and should be readily extensible to other 
periods and sampling frequencies.20 Figure 1 shows 
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Figure 1: Cumulative index of the four asset returns over the full period analysed (30st April, 2014–31st August, 2015)
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the cumulative index for the performances of the 
four assets over the period analysed. Chinese equity 
has generated significantly higher returns than 
other assets, although with a significant correction 
following June 2015. Observing the directions 
of movement in the index values from month to 
month, elements of decorrelation can be seen.21 

To add realism, the full period data were divided 
into two overlapping 12-month sub-periods:  

30th April, 2014 to 30th April, 2015, and  
31st August, 2014 to 31st August, 2015. These  
two periods represent a period in the run-up to the 
Chinese equity market correction commencing 
June 2015, and a later period encompassing the 
correction. Figure 2 shows the cumulative indexed 
performances for these sub-periods. 

The selection of these two periods was intended 
to be realistic from a risk practitioner perspective. 
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Figure 2a: Cumulative index of the four assets in the 12-month period to 30st April, 2015, representing performance in the run-up to the 
Chinese correction in June 2015 
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Figure 2b: Cumulative index of the four assets in the 12-month period to 31st August, 2015, representing performance over a period 
encompassing the Chinese correction in June 2015 
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While the periods analysed (one year) and sampling 
frequency (monthly) are unrealistic,22 conducting 
a stress-test based on data prior to some crisis (or 
difficult market period) and how the results of the 
stress-tests compare with data observed during that 
period is highly pertinent. Also, as calculations of 
volatility and VaR estimates require data collection 
over some finite period to date, pre- and post-event 
stress-tests will be likely to involve periods with 
overlapping datasets. 

The approach of this paper is to construct stress-
tests based on the earlier sub-period and then, after 
illustrating the method in detail, compare the results 
with risk estimates for the later sub-period. 

INITIAL PERIOD VAR ESTIMATE
Commence by calculating the parametric VaR of the 
portfolio over the initial sub-period from 30th April, 
2014 to 30th April, 2015. Twelve monthly returns 
were calculated from the index values for each asset 
in percentage terms23 (Table 1).

Annualised volatilities24 populated volatility matrix v.  
The correlation matrix (with assets presented in the 
order listed above) was25

R = 

1
−0.0017

0.2941
0.0611

−0.0017
1

0.1553
−0.2914

0.2941
0.1553

1
−0.2319

0.0611
−0.2914
−0.2319

1

 .

For portfolio volatility, asset weights were required. 
Here, an essentially equal-weighted portfolio, with a 

lower weight in risker Chinese equities was selected, 
wT = (0.3, 0.3, 0.3, 0.1).26 The resulting portfolio 
variance, wTSw = σ 2, gave a portfolio volatility for the 
initial sub-period of 5.09 per cent p.a. and a 95 per cent 
monthly parametric VaR of 2.42 per cent.27

SCENARIO SELECTION
For variance-covariance matrix stress-testing, 
scenario selection includes deciding which 
correlations to adjust and values to use. A practitioner 
could use a correlation matrix for the portfolio 
from some interesting historical period. In this 
case it essentially becomes historical stress-testing. 
Additionally, using a historical correlation matrix 
may have drawbacks: data may not be available for 
the period of interest; although some correlations 
in the matrix may rise, others may fall making 
the stress-test less demanding; and the available 
historical record may not include periods that address 
the practitioner’s primary concerns. Thus manual 
adjustment of the correlation matrix may be required. 

The variance-covariance matrix stress-tests 
discussed here permit a practitioner to deliberately 
target specific correlation values, while other 
matrix values are adjusted to ensure that overall the 
correlation matrix retains necessary mathematical 
properties. 

Judgment is required as to which correlations 
to adjust, and what values to use. Thereafter the 
techniques of Finger,9,13 or N&B14 ensure that 
variance-covariance matrices that are positive 

Table 1: Percentage monthly returns for the initial sub-period, 30th April, 2014–30th April, 2015

Date UK Bond UK Equity US Equity CH Equity

31/05/2014 0.9017 0.9719 2.5667 0.947
30/06/2014 −0.5142 −1.4999 0.1485 −1.1093
31/07/2014 1.0592 −0.4047 −0.8872 8.0446
31/08/2014 3.5049 1.5038 5.8208 3.1283
30/09/2014 −0.6643 −2.9017 0.6385 8.7887
31/10/2014 1.4272 −0.8622 3.882 4.3254
30/11/2014 3.2403 2.5649 4.7312 13.2434
31/12/2014 1.3474 −1.6859 0.3135 21.264
31/01/2015 5.3792 2.5213 −0.0789 2.0892
28/02/2015 −4.2004 3.3809 3.0105 0.7217
31/03/2015 1.5985 −2.1548 2.1708 18.3803
30/04/2015 −2.0978 2.6335 −2.7236 14.743
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semi-definite are constructed, and negative variances 
cannot arise. 

Historical analysis seems a sensible approach to 
bounding likely ranges that correlations between assets 
may take. A precautionary approach might identify 
the largest correlations, and greatest changes compared 
with the current correlation matrix, so that a selected 
number of correlations (not all) are increased. 

As the current analysis is based on 12-monthly 
returns, 12-monthly rolling correlations between 
asset pairs were used to determine the range of values 
each correlation could take, with thought being 
required as to how far back in the historical record 
analysis should go for the commencement of the 
rolling correlations.28 

A problem might be the number of asset pairs 
that should have their rolling correlations explored. 
For the four asset portfolio, six correlations need to 
be explored.29 An exhaustive analysis of a 20-asset 
portfolio would require computing 190 rolling 
correlations, which may prove prohibitive. A 
practitioner would likely have to form views as to 
which asset pairs were likely to be most significant 
and base adjustments to correlations on those selected. 

In the current analysis, a limitation was the 
commencement of returns data for UK fixed 
interest,30 which was 6th December, 2010; thus 
historical analysis of correlations could only 

commence from that date.31 Index data to the final 
date of the initial sub-period (30th April, 201532) is 
presented in Figure 3.

Rolling 12-month correlations between the 
returns on asset pairs are presented in Figure 4. We 
are mainly concerned with the maximum values the 
correlations could take, although the overall pattern 
may be of interest. 

Table 2 shows maximum and minimum 
12-month rolling correlation values for the six asset 
pairs, and the correlation over the initial sub-period. 
Examining Table 2, candidates for selection for use 
in stress-testing might be:

 • Largest historical 12-month rolling correlations. 
The UK–US equity correlation at +0.89, noting 
that over the 12 months to 30th April, 2014, the 
UK–US correlation was at a historically low level 
of +0.16. 

 • The largest change (increase) in correlation ‘Δ’ 
between that used in the 12 months to 30th April,  
2015 and the maximum 12-month rolling 
correlation. For UK–CH, Δ = 0.97, an increase in 
correlation from −0.29 to +0.68.

Other criteria could be devised, and combinations 
tested to identify which have the largest impact on 
the results. For the current paper, it was sufficient to 
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Figure 3: Cumulative index of the four assets from 31st December, 2010 until 30th April, 2015. The steep rise in the value of Chinese 
equities from June 2014 (as shown in Figure 2a) is readily apparent
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identify two correlations to change; both of the cases 
above used:

 • UK–US equity correlation from +0.16 to +0.89
 • UK–CH equity correlation from −0.29 to +0.68

Notice the potential unrealism of demanding high 
correlation between US and UK equities (+0.89), 
together with high correlation between UK and 
Chinese equities (+0.68), while leaving negative 
correlation between US and Chinese equities 
(−0.23). This point is returned to later.33 

For the stress-test, the aim was to adjust the 
initial correlation matrix towards a target correlation 
matrix (targeted correlations to change are presented 
in bold face).

RTarget = 

1
−0.0017

0.2941
0.0611

−0.0017
1

0.89
0.68

0.2941
0.89

1
−0.2319

0.0611
0.68

−0.2319
1

 .

There is no guarantee that correlation matrix RTarget 
is positive semi-definite.34 The purpose of this paper 
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Figure 4: Twelve-month rolling correlations between asset pairs using returns data from 31st December, 2010 to 31st April, 2014. Dates 
are presented as at the end of the 12-month rolling window

Table 2: Minimum and maximum values of 12-month rolling correlations for the six asset pairs, 31st December,  
2010–30th April, 2014

Asset pair Minimum  
12-month rolling  

correlation

Maximum  
12-month rolling  

correlation (1)

12-month rolling  
correlation to  

30th April, 2015 (2)

Δ, 
correlation (1)

minus correlation (2)

BD–UK −0.84 +0.48 −0.002 0.482
BD–US −0.62 +0.43 +0.29 0.14
BD–CH −0.84 +0.44 +0.06 0.38
UK–US +0.16 +0.89 +0.16 0.73
UK–CH −0.47 +0.68 −0.29 0.97
US–CH −0.38 +0.60 −0.23 0.83
Maximum +0.89 0.97
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is to demonstrate two techniques to come up with a 
correlation matrix similar to (but not quite the same 
as) RTarget that will have the necessary mathematical 
properties.35 The two techniques presented are 
those of Finger and N&B, which are covered in the 
following sections. 

VARIANCE-COVARIANCE MATRIX 
STRESS-TEST FOLLOWING FINGER
Finger’s method involves changing correlations 
by modifying selected return vectors.36 Adjusting 
returns towards an average to increase correlation 
has intuitive appeal; however, a goal-seek algorithm 
is required. For a large multi-asset portfolio, if a 
long history of returns has to be modified this might 
become cumbersome. The example has returns on 
four assets (Table 1), covering 12 months. 

Schachter’s demonstration of this method9 only 
adjusts a single correlation. Here, two correlations 
are increased. A single parameter, θ, is used to 
increase all selected correlations.13 One cannot 
individually target two correlations to different 
values; instead increasing θ raises all selected 
correlations.37 This is a weakness compared with 
N&B’s method which permits differing targets 
for different correlations. In Finger’s multiple 
correlation example, the average correlation was 

targeted. Here, the two targeted RTarget correlation 
values were 0.89 and 0.68, with average of 0.785. 
Selecting θ meant that the resulting adjusted 
correlation matrix had correlations between UK 
equity/US equity and UK equity/CH equity that 
averaged 0.785. 

Appendix A details the method, with an outline 
and results following. As the correlation pairs to 
be adjusted were UK equity/US equity and UK 
equity/CH equity, returns from three assets were 
modified; UK equity, US equity and CH equity. 
Average returns across these three assets were used, 
generating modified returns (Table 3).

Modifying returns changes volatilities, so 
normalised returns can be used to restore original 
asset volatilities.38 The normalised returns appear 
in Table 3, where asset volatilities now match the 
original data. The correlation matrix could be 
constructed from either modified, or normalised 
returns. As no adjustment has been required for the 
correlation between UK Bonds and another asset, 
the UK Bond returns were unchanged. 

A search algorithm explored trial values of θ 
until the desired correlation target was obtained.39 
The average target correlation of 0.785 was sought 
for the average of the correlation pairs UK″/US″ 
and UK″/CH″.40 When θ = 0.6408, the correlations 
were ρUK″/US″ = 0.8198 and ρUK″/CH″ = 0.7501, with 

Table 3: Results of Finger’s method for modifying period returns
Date UK Bond UK  

Equity
US  

Equity
CH  

Equity
Rave UKE′ USE′ CHE′ UKE′′ USE′′ CHE′′

31/05/2014 0.9017 0.9719 2.5667 0.9470 1.4952 1.3072 1.8801 1.2983 1.6326 2.4984 2.3754
30/06/2014 −0.5142 −1.4999 0.1485 −1.1093 −0.8202 −1.0643 −0.4722 −0.9240 −1.3293 −0.6275 −1.6907
31/07/2014 1.0592 −0.4047 −0.8872 8.0446 2.2509 1.2970 1.1237 4.3320 1.6199 1.4933 7.9261
31/08/2014 3.5049 1.5038 5.8208 3.1283 3.4843 2.7729 4.3236 3.3564 3.4632 5.7455 6.1411
30/09/2014 −0.6643 −2.9017 0.6385 8.7887 2.1752 0.3515 1.6232 4.5507 0.4391 2.1571 8.3263
31/10/2014 1.4272 −0.8622 3.8820 4.3254 2.4484 1.2592 2.9634 3.1226 1.5727 3.9380 5.7133
30/11/2014 3.2403 2.5649 4.7312 13.2434 6.8465 5.3086 6.0867 9.1443 6.6300 8.0885 16.7308
31/12/2014 1.3474 −1.6859 0.3135 21.2640 6.6305 3.6433 4.3614 11.8868 4.5502 5.7958 21.7487
31/01/2015 5.3792 2.5213 −0.0789 2.0892 1.5105 1.8736 0.9396 1.7184 2.3400 1.2486 3.1441
28/02/2015 −4.2004 3.3809 3.0105 0.7217 2.3711 2.7338 2.6007 1.7786 3.4143 3.4561 3.2542
31/03/2015 1.5985 −2.1548 2.1708 18.3803 6.1321 3.1555 4.7092 10.5317 3.9410 6.2580 19.2693
30/04/2015 −2.0978 2.6335 −2.7236 14.7430 4.8843 4.0758 2.1515 8.4255 5.0904 2.8592 15.4158

Sample SD 
Vol %pa

2.5719 2.1782 2.4945 7.4770 1.7441 1.8771 4.0866 2.1782 2.4945 7.4770
8.9094 7.5456 8.6413 25.9013 6.0416 6.5026 14.1564 7.5456 8.6413 25.9013

Vol Difference −1.5040 −2.1386 −11.7448 0.0000 0.0000 0.0000

Notes: UKE′ denotes R′UKE, UKE″ denotes R″UKE (see main text), with similar interpretations for USE and CHE.
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average 0.785 as required. The individual correlation 
targets of 0.89 and 0.68 have not been met, which 
is a limitation of the method. The resulting adjusted 
correlation matrix was41:

RFinger = 

1
0.1446
0.2754
0.1022

0.1446
1

0.8198
0.7501

0.2754
0.8198

1
0.7229

0.1022
0.7501
0.7229

1

 .

As the normalised returns of three of the asset classes 
differ from the original returns, correlations between 
UK Bonds and other asset classes were also changed, 
as well as the correlation between US equity and 
CH equity, which has risen from −0.23 to +0.72.42 

The adjusted correlation matrix RFinger was used to 
calculate a stress-test parametric VaR. The portfolio 
asset weights were left unchanged,43 and normalised 
returns ensure asset volatilities were unchanged. Thus:

SFinger = vRFingerv

σ
2
Finger = wT SFingerw

σFinger = 7.80%pa

VaR% = ∙ −NσFinger δt1/2 ∙ = 3.70%

The 95 per cent monthly parametric VaR for  
the stress-test would be 3.70 per cent. Applying a 
multiplier of four to the portfolio volatility,  
σ ′

Finger = 4 × 7.80 = 31.19%pa, with resulting 95 per 
cent monthly stress-test parametric VaR of 14.81 per 
cent, significantly higher than the unstressed  
VaR of 2.42 per cent. 

VARIANCE-COVARIANCE MATRIX 
STRESS-TEST FOLLOWING N&B
Numpacharoen and Bunwong (N&B) propose a 
different approach to adjusting a correlation matrix. 
The correlation matrix is adjusted directly with 
Cholesky decomposition, ensuring the resulting 
matrix is positive semi-definite. Products of 
trigonometrical functions represent correlations, 
using changes to correlative angles, ensuring 
correlations lie within −1 ≤ ρ ≤ + 1. This has 
advantages. First, only the correlation matrix is 
required, which is helpful compared with Finger’s 
approach for larger portfolios if many asset return 

histories have to be adjusted, or if historical data 
are unavailable. Secondly, Finger’s approach only 
permits multiple correlations to be adjusted in a 
blanket manner, with a single parameter θ changing 
all correlations targeted. Thus multiple correlations 
cannot be targeted to unique values. N&B’s approach 
permits individual correlations to be individually 
targeted. The disadvantage of N&B’s method is 
the additional mathematical complexity, which 
is a reason for presenting a fully worked example 
in the current paper. Details of the computational 
procedure are also extensively presented elsewhere44 
(see also Appendix B and below). 

In the original correlation matrix, assets were listed 
in the order UK Bonds, UK equity, US equity and 
Chinese equity. The target correlation matrix was45

RTarget = 

1
−0.0017

0.2941
0.0611

−0.0017
1

0.89
0.68

0.2941
0.89

1
−0.2319

0.0611
0.68

−0.2319
1

 .

The assets are divided into two groups. Group A 
contains the assets with correlations to be adjusted, 
while group B contains assets with correlations not 
to be adjusted. 

 • Group A: UK, US, CH
 • Group B: UKB

The initial correlation matrix should be arranged 
into submatrices as follows:

CInitial = 
CAA
CBA

CAB
CBB

 .

CAA and CBB are correlation matrices among the 
assets in groups A and B, respectively, while CAB 
and CBA are correlations between assets in group A 
and assets in group B. In the current example, there 
are three assets in group A and one asset in group  B; 
thus CAA is a 3 × 3 matrix and CBB is 1 × 1. The order 
of assets in the initial correlation matrix needs to be 
changed as shown in Table 4.46

CInitial = 

1
0.1553

−0.2914
−0.0017

0.1553
1

−0.2319
0.2941

−0.2914
−0.2319

1
0.0611

−0.0017
0.2941
0.0611

1

 .
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One cannot generally expect the ordering of the 
assets to be convenient, so the process is illustrated 
here. Reordering the target correlation matrix,47

C Target = 

1
0.89
0.68

−0.0017

0.89
1

−0.2319
0.2941

0.68
−0.2319

1
0.0611

−0.0017
0.2941
0.0611

1

 .

Cholesky decomposition is used on CInitial (see 
Appendix  B), so that the Hermitian positive definite 
matrix may be decomposed into a lower triangular 
matrix and its transpose CInitial = UUT. Here48

U = 

1
+0.1553
−0.2914
−0.0017

0
+0.9879
−0.1890
+0.2979

0
0

+0.9378
+0.1247

0
0
0

+0.9464

 .

With a resulting correlative angles matrix (radians),49

θ4 × 4  = 

0
θ21
θ31
θ41

0
0

θ32
θ42

0
0
0

θ43

0
0
0
0

 

= 

0
1.4149
1.8665
1.5725

0
0

1.7697
1.2683

0
0
0

1.4398

0
0
0
0

 .

These angles will later be used to reconstruct the 
amended correlation matrix. 

Cholesky decomposition is repeated on submatrix 
A of target correlations.50

A = 
1

0.89
0.68

0.89
1

−0.2319

0.68
−0.2319

1
 .

The eigenvalues of A are −0.2389, 1.2230 and 
2.0159, making A not positive semi-definite and not 
a valid correlation matrix. (The results of naively 
proceeding with the Cholesky decomposition 
are outlined in Appendix C.) N&B give two 
worked examples: the first uses only a single target 
correlation; in their second example they target 
multiple correlations, but all to the same value 
(0.85), while the current paper targets two different 
correlation values (0.89 and 0.68). N&B state that 
the target submatrix (CAA, or A as shown above) 
must itself be a valid correlation matrix,51 without 
suggesting how to achieve that. The current example 
with two different target correlations reveals a 
possible difficulty with their method. As the method 
suggested by Finger could be used to target multiple 
correlations towards the same value, it reduces the 
usefulness of N&B’s approach if multiple correlations 
cannot be targeted to different values. 

Here it is helpful to introduce an element of 
practitioner ‘common sense’: what is actually being 
asked for? The original correlations (two decimal 
places) were:

 • UK equity–US equity: 0.16
 • UK equity–Chinese equity: −0.29
 • Chinese equity–US equity: −0.23

A decision was made to arbitrarily increase the 
correlations of two of these to

 • UK equity–US equity: 0.89
 • UK equity–Chinese equity: 0.68

While retaining the original correlation of −0.23 
between Chinese and US equity. With positive 
correlations between US and UK equities, and UK 
and Chinese equities, it may seem unreasonable 
to demand a negative correlation between US and 
Chinese equities given the common link of UK 
equities. 

Table 4a: Initial correlation matrix with asset classes 
shown
Initial UKB UKE USE CHE

UKB 1 −0.0017 0.2941 0.0611
UKE −0.0017 1 0.1553 −0.2914
USE 0.2941 0.1553 1 −0.2319
CHE 0.0611 −0.2914 −0.2319 1

Table 4b: Initial correlation matrix after reordering of asset 
classes
Reordered UKE USE CHE UKB

UKE 1 0.1553 −0.2914 −0.0017
USE 0.1553 1 −0.2319 0.2941
CHE −0.2914 −0.2319 1 0.0611
UKB −0.0017 0.2941 0.0611 1
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Something is required to determine an acceptable52 
correlation between US and Chinese equities for 
the target correlations that were selected, given the 
UK equities link. This is explored in Appendix D;  
however, at this stage the author proposes a 
convenient rule for linked correlations. The 
subscripts denote different assets and an acceptable 
correlation between assets 1 and 3 is to be 
deduced given correlations between assets 1 and 2, 
and 2 and 3.53

 ρ23 = ρ12 ρ13 ±  1 − ρ2
12 ×  1 − ρ2

13.

Here, 

ρUSCH = ρUSUK ρUKCH ±  1 − ρ2
USUK ×  1 − ρ2

UKCH ,

ρUSCH =  0.89 × 0.68 ± 1 − 0.892  

× 1 − 0.682

= 0.6052 ± 0.1118 

= 0.2709 or 0.9395.

As the correlation between US and Chinese equities 
was not directly targeted, it appears sensible to  
adopt the value of ρUSCH nearest to the original value 
−0.23, ie ρUSCH  = 0.2709. Thus target submatrix  
A becomes:

A′ = 
1

0.89
0.68

0.89
1

0.2709

0.68
0.2709

1
 .

The eigenvalues of A′ are 0, 0.7398 and 2.260, so 
it is positive semi-definite and a valid correlation 
matrix, the negative eigenvalue being replaced by a 
zero. Using Cholesky decomposition, re-express 

A′ = VV T, where

V = 
1

0.89
0.68

0
0.4560

−0.7332

0
0
0

 .

The lower triangular matrix was used to obtain the 
correlative angles, V = B3 × 3.

V = 
1

cos θ21
cos θ31

0
sin θ21

cos θ32 sin θ31

0
0

sin θ31 sin θ32

 .

Resulting in a matrix of correlative angles,54

θ3 × 3  = 
0

θ21
θ31

0
0

θ32

0
0
0

 = 
0

0.4735
0.8230

0
0

3.1416

0
0
0

 .

Angle matrix θ3 × 3 contains information about the 
target correlations to be adjusted, and originated 
from the submatrix at the top left of the initial 
correlation matrix. Substituting θ3 × 3 as a submatrix 
into the top left of θ4 × 4 gives revised correlative 
angle matrix θ4 × 4.

θ4 × 4 = 

0
0.4735
0.8230
1.5725

0
0

3.1416
1.2683

0
0
0

1.4398

0
0
0
0

 .

The non-zero elements substituted from θ3 × 3 are 
shown in bold face. The angles of θ4 × 4 used in B4 × 4 
generate a new lower diagonal matrix= U,

1
cos θ21

cos θ31

cos θ41

0
sin θ21

cos θ32 sin θ31

cos θ42 sin θ41

0
0

sin θ31 sin θ32

cos θ43 sin θ41 sin θ42

 

0
0
0

sin θ41 sin θ42 sin θ43

 = U.

U = 

1
0.89
0.68

−0.0017

0
0.4560

−0.7332
0.2979

0
0
0

0.1247

0
0
0

0.9464

 .

Finally, UUT recreates the adjusted correlation 
matrix.

UUT  = R ′N&B = 

1
0.89
0.68

−0.0017

0.89
1

0.2709
0.1344

0.68
0.2709

1
−0.2196

−0.0017
0.1344

−0.2196
1

 .

This has eigenvalues 0, 0.5828, 1.1560 and 2.2610, 
making it positive semi-definite and a valid 
correlation matrix. For comparison with the original 
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correlation matrix, the order of the assets needs to 
be rearranged, reversing the process of Table 4; see 
Table 5. Thus,

RN&B = 

1
−0.0017
0.1344

−0.2196

−0.0017
1

0.89
0.68

0.1344
0.89

1
0.2709

−0.2196
0.68
0.2709

1

.

Comparing this with initial correlation matrix, 
RInitial, and target correlation matrix, RTarget, it 
can be seen that N&B’s method has generated 
both targeted correlations exactly, which Finger’s 
approach did not. 

The stressed correlation matrix RN&B is used to 
calculate a stressed parametric VaR.55 Thus,

SN&B = vRN&Bv

σ
2
N&B = wT SN&Bw

σN&B = 6.82%pa

VaR% = ∙ −NσN&B δt1/2 ∙ = 3.24%

The 95 per cent monthly parametric VaR for the 
stress-test might be 3.24 per cent. Applying  
a multiplier of four to portfolio volatility,  
σ ′N&B = 4 × 6.82 = 27.29% pa, with a resulting  
95 per cent monthly stress-test parametric VaR 

of 12.96 per cent, is significantly higher than the 
unstressed VaR of 2.42 per cent.56

COMPARISON BETWEEN FINGER 
AND N&B
Previous sections have explored the generation 
of a stressed volatility and parametric VaR for a 
four-asset portfolio using hypothetical variance-
covariance matrix stress-test methods proposed 
respectively by Finger and N&B. Results are 
summarised in Table 6. 

The stressed portfolio volatility for Finger’s 
method (7.80 per cent p.a.) is higher than that 
obtained by N&B’s method, 6.82 per cent. This 
results in higher stressed values using Finger’s 
method for the 95 per cent monthly parametric 
VaRs, as well as when based on four times the 
volatility. Interpretation appears straightforward; 
the average of the elements of Finger’s adjusted 
correlation matrix is +0.60, but +0.47 under N&B’s 
method. Finger’s approach has generated higher 
average correlations overall, resulting in a greater 
loss of diversification. 

Higher risk may not indicate a better result, 
however. Excessive assumptions, making a portfolio 
appear unduly risky, may result in overly cautious 
management, with consequences for returns. 
Alternatively consider how closely the adjusted 
correlation matrices match the target correlation 
matrix, which was devised by the practitioner following 
analysis of correlation data and presumably reflects their 
primary concerns. Unnecessary departures from this 
would likely be deemed unhelpful. 

Comparing the averages of the elements of the 
correlation matrices, the average correlation for the 
initial matrix was +0.25, while the average for the 
target correlation matrix was +0.46, which presumably 
encapsulates the practitioner’s primary concerns. 
Finger’s adjusted matrix had an average correlation of 
+0.60, while N&B’s adjusted matrix average was +0.47, 
essentially the same as the target matrix average. 

Other comparisons of the adjusted correlation 
matrices with the target indicate similar results. 
Comparing the magnitudes of the differences 
between the elements in adjusted matrices and the 
target matrix, the average difference is 0.16 for 
Finger, and a lesser 0.12 for N&B. The maximum 

Table 5a: Adjusted correlation matrix with reordered asset 
classes
Reordered UKE USE CHE UKB

UKE 1 0.89 0.68 −0.0017
USE 0.89 1 0.2709 0.1344
CHE 0.68 0.2709 1 −0.2196
UKB −0.0017 0.1344 −0.2196 1

Table 5b: Adjusted correlation matrix with asset classes in 
initial order
Initial order UKB UKE USE CHE

UKB 1 −0.0017 0.1344 −0.2196
UKE −0.0017 1 0.89 0.68
USE 0.1344 0.89 1 0.2709
CHE −0.2196 0.68 0.2709 1



Rayer

276 Journal of Risk Management in Financial Institutions Vol. 9, 3 264–288 © Henry Stewart Publications 1752-8887 (2016)

values of these differences demonstrate a clear 
outcome: for Finger’s approach the maximum 
difference from the target was 0.95, whereas 
for N&B it was only 0.5. These relate to the 
problematic correlation between US equity and 
Chinese equity, set at −0.23 in the target. For 
this pair Finger’s method generated an adjusted 
correlation of +0.72, while N&B’s method, with 
the additional input described above,57 only 
produced +0.27. In this case, N&B’s method with 
the small addition above would appear to have 
matched the target correlation matrix better than 
Finger’s method. 

While stressed volatilities were not used in the 
current example for simplicity, both methods allow 
volatility adjustments. In Finger’s method, instead of 
normalising modified returns to restore original asset 
volatilities, modified returns could be ‘normalised’ 
to other values as desired. With N&B’s method, 
adjustment to volatilities is simple, as the original 
volatility matrix was used in conjunction with the 
adjusted correlation matrix to obtain the adjusted 
variance-covariance matrix in the parametric VaR 
calculation. The practitioner could simply replace it 
with a matrix of changed volatilities to explore their 
impact on stress-test results. 

Table 6: Comparison between the variance-covariance stress-test calculations of Finger and N&B
Finger N&B

Initial correlation matrix 
(average correlation 0.25)

1
−0.0017

0.2941
0.0611

−0.0017
1

0.1553
−0.2914

0.2941
0.1553

1
−0.2319

0.0611
−0.2914
−0.2319

1

Portfolio volatility 5.088%p.a.
95% monthly parametric 

VaR
2.42%

Target correlation matrix 
(average correlation 0.46)

1
−0.0017

0.2941
0.0611

−0.0017
1

0.89
0.68

0.2941
0.89

1
−0.2319

0.0611
0.68

−0.2319
1

Adjusted correlation matrix 1
0.1446
0.2754
0.1022

0.1446
1

0.8198
0.7501

0.2754
0.8198

1
0.7229

0.1022
0.7501
0.7229

1

1
−0.0017

0.1344
−0.2196

−0.0017
1

0.89
0.68

0.1344
0.89

1
0.2709

−0.2196
0.68
0.2709

1

Average correlation 0.60 0.47
Difference between target 

and adjusted correlation 
matrices

0
0.15

−0.02
0.04

0.15
0

−0.07
0.07

−0.02
−0.07

0
0.95

0.04
0.07
0.95
0

0
0

−0.16
−0.28

0
0
0
0

−0.16
0
0

0.50

−0.28
0

0.50
0

Average magnitude of 
differences

0.16 0.12

Maximum magnitude of 
differences

0.95 0.50

Stressed volatility 7.80%p.a. 6.82%p.a.
Stressed 95% monthly 

parametric VaR
3.70% 3.24%

4x stressed volatility 31.19%p.a. 27.29%p.a.
95% monthly parametric 

VaR based on 4x 
stressed volatility

14.81% 12.96%
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VAR ESTIMATE FOR PERIOD 
ENCOMPASSING CORRECTION
Finally the portfolio parametric VaR was calculated 
over the terminal sub-period from 31st August, 
2014 to 31st August, 2015, the period including the 
Chinese equities correction. Twelve-monthly returns 
were calculated for each asset (Table 7). While this 
comparison is included for completeness, the reader 
should be aware that, as very small datasets have been 
used (12-monthly returns), the results should not 
be regarded as being authoritative as a comparison 
between a portfolio stress-test and an ensuing market 
correction. The objective (as with the rest of this 
paper) was to illustrate and explore the method within 
the framework of a worked example that is capable of 
being replicated by the interested reader. 

Calculation of the parametric VaR proceeded 
as before. The correlation matrix was (with assets 
presented in the order listed in Table 7):

R = 

1
0.1278
0.2848
0.1272

0.1278
1

0.6060
0.2262

0.2848
0.6060

1
0.3442

0.1272
0.2262
0.3442

1

 .

Correlations for this final sub-period were all 
positive; however, none reached the +0.89 
correlation proposed in the stress-test. Neglecting 
the unit correlations down the leading diagonal, the 
highest correlation (+0.61) was between UK and 
US equities; other correlations were all much lower, 
none being greater than +0.34 (US and China 

equities). In this sense the stress test scenario was 
tougher than actually occurred. 

The variance-covariance matrix was calculated 
and the same asset weights used. The resulting 
portfolio variance gave a portfolio volatility for the 
terminal sub-period of 9.30 per cent p.a., with 95 per 
cent monthly parametric VaR of 4.42 per cent.58 

The volatility observed during the terminal period 
(9.30 per cent) was higher than the stressed volatilities 
derived from the adjusted correlation matrices (6.82 
and 7.80 per cent p.a.), meaning that the 95 per cent 
monthly parametric VaRs were also less than the 
4.42 per cent above, at 3.24 per cent and 3.70 per 
cent, respectively. The actual volatility was a factor 
1.2–1.4 times larger than the stressed volatilities 
above (with the same factor feeding through to the 
parametric VaRs), well within the stressed volatility 
and VaR estimates based on a multiplier of four times 
the stressed volatility (with stress-test volatilities of 
27.29 per cent p.a. and 31.19 per cent p.a., together 
with stressed parametric VaR estimates of 12.96 per 
cent and 14.81 per cent, notably higher than those 
observed in the terminal period).

One would not expect a stress-test to estimate the risk 
measures during a stressed period exactly, but to generate 
an envelope that future risk values would be expected 
not to exceed. This shows the importance of using a 
multiplier on the stressed values derived (here a factor of 
four). Clearly the volatility and parametric VaR lie well 
within this envelope as one would hope, as the market 
correction period should not necessarily be assumed to 
be the ‘worst’ event that could reasonably occur. 

Table 7: Percentage monthly returns for the terminal sub-period, 31st August, 2014–31st August, 2015
Date UK Bond UK Equity US Equity CH Equity

30/09/2014 −0.6643 −2.9017 0.6385 8.7887
31/10/2014 1.4272 −0.8622 3.8820 4.3254
30/11/2014 3.2403 2.5649 4.7312 13.2434
31/12/2014 1.3474 −1.6859 0.3135 21.2640
31/01/2015 5.3792 2.5213 −0.0789 2.0892
28/02/2015 −4.2004 3.3809 3.0105 0.7217
31/03/2015 1.5985 −2.1548 2.1708 18.3803
30/04/2015 −2.0978 2.6335 −2.7236 14.7430
31/05/2015 0.3367 0.2843 1.6242 4.3164
30/06/2015 −1.7466 −5.3085 −4.7511 −9.7650
31/07/2015 1.5991 2.3024 2.7275 −15.1652
31/08/2015 0.2445 −5.9716 −4.9709 −13.7657
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Equally, the exact volatility and VaR for the 
correction period would not be estimated, as one 
generally cannot hope to correctly estimate the 
exact correlations and volatilities that will occur. 
In this case the stress test has overestimated some 
correlations and underestimated others. 

A further reason that the stress-test would not be 
expected to replicate the terminal period volatility 
and VaR is that no changes were made to the asset 
volatilities in the stress-test, an area that could 
also have been addressed, perhaps using similar 
approaches to those used to explore likely correlation 
ranges applied to volatility (Table 8).59 

The terminal period had higher equity volatilities 
than those included in the stress-tests. This would be 
an obvious way of extending the stress-test scenario 
(the volatility of UK bonds remained essentially 
unchanged). 

SUMMARY AND DISCUSSION
Both the hypothetical variance-covariance matrix 
stress-test examples presented generated a risk 
envelope wider than the risk estimates (volatility 
and parametric VaR) observed during a following 
market reversal. This seems reasonable; one might 
not expect a market reversal to represent the 
‘extreme but plausible’ scenario stress-testing is 
intended to capture. Both stress-tests required the 
use of a multiplying factor to volatility60; otherwise 
they would have indicated a risk magnitude less than 
occurred during the reversal.61 

Table 9 presents a summary of key aspects of the 
two methods. Finger’s approach has intuitive appeal 
with returns adjusted towards an average to increase 
correlation, but a goal-seek algorithm is required. 
For a large multi-asset portfolio, with a long history 
of returns,62 this might become cumbersome and a 
complete asset return history may not be available. 
In this case N&B’s approach seems practical, as only 
the correlation matrix is required, although the 
mathematical sophistication may discourage some 

practitioners. Although N&B’s method ensures an 
acceptable correlation matrix, there is no guarantee 
of economic validity. Choice between the methods 
may be dictated by availability of asset returns for 
Finger, and access to a Cholesky decomposition 
algorithm63 for N&B. 

Adjusting correlations between assets revealed 
differences between the approaches. Finger uses 
a single parameter, θ, to increase the values of 
all selected correlations. Increases to multiple 
correlations only targeted some average, rather than 
different correlations for different asset pairings. 
This is weak if a practitioner has different correlation 
targets in mind for different asset pairs. N&B’s 
method allowed different asset pairs to be adjusted 
to different correlation values, appearing superior. 
In the example above, however, with correlations 
linked by a common asset,64 a non-positive definite 
matrix was targeted. A work-around was proposed, 
giving a mathematically (and intuitively) acceptable 
correlation. 

Both methods worked straightforwardly in 
conjunction with estimates of stressed parametric 
VaRs. They permit practitioners to generate 
correlation matrices with suitable mathematical 
properties, without depending on correlations 
generated from historical events. This benefits 
f lexibility in scenario creation. Regarding isolating 
specific concerns, historical events tend to be ‘messy’ 
with many knock-on effects, while these methods 
permit a focus on individual portfolio aspects. 
Similarly, to explore extreme events, historical 
methods only permit this if suitable events lie within 
the historical record, while the hypothetical methods 
permit factors to be pushed further. 

By adjusting correlation matrices, such approaches 
might lend themselves to studies linked to portfolio 
optimisations requiring outcomes in terms of both 
risks and returns; this aspect has not been explored. 

Data availability is a practical consideration. 
Finger’s approach would likely require considerable 
asset returns data, which may not be conveniently 

Table 8: Initial and terminal sub-period volatilities (%p.a.)
Volatility %p.a. UK bond UK equity US equity CH equity

Initial sub-period to 30/04/2015 8.91% 7.55% 8.64% 25.90%
Terminal sub-period to 31/08/2015 8.78% 11.20% 11.10% 41.98%
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available. Extensive explorations of the likely ranges 
of correlations may also be limited by restricted 
data. While limited data for determining correlation 
ranges would impact scenario selection for both 
approaches, N&B’s method may ease practitioner 
exploration of correlation concerns, even based on 
limited evidence. This is because N&B’s method 
only requires the current portfolio correlation 
matrix coupled with the practitioner’s views. 
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Table 9: Key aspects of hypothetical variance-covariance matrix stress-testing using the approaches of Finger or N&B
Aspect Finger N&B

Does the approach generate acceptable correlation matrices? (Matrices are positive  
semi-definite; non-targeted correlation values are adjusted to ensure this.)

Yes Yes

Can historical correlation matrices be used as a guide? Yes Yes
Can both correlations and volatilities be adjusted? Yes Yes
Can correlations be individually adjusted to values selected by the practitioner, to isolate 

specific concerns?
Yes Yes

Can multiple correlations be adjusted? Yes Yes
With multiple correlations, can individual correlations be adjusted to different values? No Yes
Does a single control parameter raise (lower) all targeted correlations? Yes No
Are period returns vectors required for all portfolio assets, with calculations required on  

these returns?
Yes No

Can the correlation matrix be adjusted directly? No Yes
Is a trial-and-error search algorithm required? Yes No
Is a Cholesky decomposition algorithm required? No Yes
What is the level of mathematical complexity required? Lower Higher
What level of data availability is required? Higher Lower
Did stress-test generate risk estimates that were greater than observed during the following 

market correction presented without using an additional factor on volatilities?
No No

Did stress-test generate risk estimates that were greater than observed during the following 
market correction presented when an additional factor on volatilities was used?  
(In the current study a factor of 4 was used.)

Yes Yes

Should a multiplying factor be applied to resulting portfolio volatilities for the stress-test?  
(In the current study a factor of 4 was used.)

Yes Yes
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Financial Markets, Vol. 7, pp. 2–7 further divides 
artificial stress-tests into ‘hypothetical’ stress-
tests and ‘algorithmic’ stress-tests. Algorithmic 
stress-tests do not concern us here, as this paper 
explores only hypothetical stress-testing. For 
further information on algorithmic stress-tests 
see Schachter, B. (2004) ‘Stress testing’, in  
C. Alexander and E. Sheedy (eds), The 
professional risk managers’ handbook, PRMIA 
Publications, Wilmington, DE. 

6 Crouhy, M., Galai, D. and Mark, R. (2014) 
‘The essentials of risk management’, 2nd edn, 
McGraw-Hill Education, New York.

7 Actually a number of academic studies debate this 
point; a discussion can be found in Schachter, B.  
(2004) ‘Stress testing’, in C. Alexander and  
E. Sheedy (eds), The professional risk managers’ 
handbook, PRMIA Publications, Wilmington, DE.

8 The volatility matrix is constructed by placing 
the volatilities of the assets down the leading 
diagonal. 

9 Schachter, B. (2004) ‘Stress testing’, in  
C. Alexander and E. Sheedy (eds), The professional 
risk managers’ handbook, PRMIA Publications, 
Wilmington, DE.

10 Rebonato, R. and Jackel, P. (1999) ‘The most 
general methodology to create a valid correlation 
matrix for risk management and option pricing 
purposes’, Journal of Risk, Vol. 2, No. 2. 

11 Higham, N. J. (2002) ‘Computing the nearest 
correlation matrix — a problem from finance’, 
IMA Journal of Numerical Analysis, Vol. 22,  
pp. 329–343. The Frobenius norm of a matrix is 
the square root of the sum of the absolute squares 
of the matrix elements. If a correlation matrix is 
subtracted from some target correlation matrix 
this gives a matrix of ‘errors’ and the Frobenius 
norm a measure of their magnitude. 

12 Turkay, S., Epperleinm E. and Christofides, N. 
(2003) ‘Correlation stress testing for value-at-
risk’, Journal of Risk, Vol. 5, No. 4, pp. 75–89. 

13 Finger, C. A. (1997) ‘Methodology to stress 
correlations’, RiskMetrics Monitor, 4th Quarter, 
pp. 3–11.

14 Numpacharoen, K. and Bunwong, K. (2012) 
‘An intuitively valid algorithm for adjusting 
the correlation matrix in risk management and 
option pricing’, available at: SSRN-id1980761.

15 This ensures correlations lie within −1 ≤ ρij ≤ + 1 
and the resulting adjusted correlation matrix has 
the necessary mathematical properties. 

16 Exchange traded fund (ETF). 
17 The tickers required for the assets were: ‘GILS.PA’,  

‘^FTAS’, ‘^GSPC’ and ‘000001.SS’, Yahoo 
Finance, available at: http://finance.yahoo.com/ 
(accessed October 2015).

18 Exchange rate pairs US$-GBP and CNY-
GBP were required, conveniently represented 
in Oanda by tickers ‘USD/GBP’ and ‘CNY/
GBP’. Oanda (n.d.) ‘Historical exchange rates’, 
oanda.com, available at: http://www.oanda.com/
currency/historical-rates/ (accessed October 2015).

19 It should be noted that these databases can 
be subject to periodic revisions (as indeed 
occurred during the preparation of this paper). 
Thus, should the reader wish to reproduce 
the calculations herein in detail, they would 
be advised to check that a more recent data 
extraction does not differ from the returns data 
presented.

20 Weekly or daily returns rather than monthly, for 
example.

21 For example, during the period March–April 
2015, the Chinese equity index rose, while the 
UK equity index fell. 

22 But have been selected to permit explicit 
presentation of the analysis methods used. 

23 Generally practitioners are more familiar with 
percentage returns, rather than decimals. 

24 The sample standard deviation of the monthly 
returns, with denominator (N − 1) was used, 
giving the monthly volatility, which was 
then divided by δt , with δt = 1/12, to obtain 
annualised volatilities, as a more familiar unit for 
practitioners. 

25 The eigenvalues for this correlation matrix are 
0.5899, 0.7430, 1.1764, 1.4907, meaning that 
this matrix is positive semi-definite, as all of 
its eigenvalues are positive or zero (ie none of 
its eigenvalues is negative). This is a necessary 
property for a valid correlation matrix. 

26 Thus a 30 per cent portfolio weight was allocated 
to each of UK fixed interest, UK equity and  
US equity, with a lesser 10 per cent allocation to 
Chinese equity, while the sum of the portfolio 
weights added up to 100 per cent.
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27 The portfolio 95 per cent monthly parametric 
VaR for the initial sub-period was calculated  
as VaR% = ∙ −Nσδ t1/2 ∙ = 1.64485 × 5.09%  
× 1/12 = 2.42%. While parametric VaR may 
be criticised as a risk measure, and indeed a 
range of other VaR methodologies are available, 
the primary focus of the current paper is on 
variance-covariance matrix stress-testing; thus 
parametric VaR was deemed to be sufficient for 
the present purpose.

28 Even though monthly data have been used here, 
this approach can easily be generalised to longer 
periods and different sampling frequencies, for 
weekly or daily data, etc. 

29 For the correlation matrix, n2; minus n for 
each element in the leading diagonal, with the 
remainder divided by two. A little thought reveals 
that for an n-asset portfolio there will be n(n − 1)/2 
combinations of asset pairs to be considered.

30 The reader may recall that, in order to use 
publically available data, the Lyxor ETF iBoxx 
GBP Gilts were used from Yahoo Finance. 

31 Or, as monthly data are being used, from  
31st December, 2010.

32 We imagine that we are conducting the stress-
tests immediately after the end of April 2015, so 
the final period data until 31st August, 2015 are 
unavailable for the stress-test calculations.

33 A similar approach could be used to scope a 
likely range of values for stressed volatilities, 
perhaps using rolling periods to determine 
volatility ranges. These could be used in the 
following stress-test. For the sake of simplicity 
and brevity, these have not been included in the 
current study, which aims primarily to explore 
stress-testing in terms of correlations. The 
approaches used below are, however, capable of 
including adjusted volatilities as well as targeted 
correlations. 

34 Indeed the eigenvalues for RTarget are −0.2704, 
0.9431, 1.2768 and 2.0504, meaning that the 
matrix is not positive semi-definite and therefore 
not a valid correlation matrix. 

35 That is, will be positive semi-definite, while 
as nearly as possible retaining the targeted 
correlation values.

36 Which are then rescaled if original asset 
variances are to be left unchanged. 

37 To parody a quote, ‘a rising θ will lift all 
correlations’. ‘A rising tide lifts all boats’, 
improvements in the economy will benefit 
all participants in that economy, attributed to 
John F Kennedy in a speech from 1963. See 
Wikipedia (n.d.) ‘A rising tide lifts all boats’, 
available at: https://en.wikipedia.org/wiki/ 
A_rising_tide_lifts_all_boats (accessed  
13th October, 2015).

38 Or else to adjust volatilities as part of the stress 
test. 

39 In fact, even without a search algorithm, it is 
quite straightforward to set up a spreadsheet of 
calculations [F1, F2] (see Appendix), followed 
by calculations of the appropriate correlations 
and their average. Trial values of θ can then be 
entered manually, until such time as the resulting 
average correlation has a value of 0.785. 

40 Or equivalently between the correlations on the 
returns pairs R′UK/R′US and R′UK/R′CH.

41 This matrix has eigenvalues 0.1687, 0.2807, 
0.9634 and 2.5872; as these are all positive, the 
matrix is positive semi-definite, meeting the 
requirement of a valid correlation matrix. 

42 This result seems unsurprising, as the target 
correlations selected required a high correlation 
between UK equities and US equities as well as 
between UK equities and CH equities; hence 
with UK equities acting as a link there must 
also be a high correlation between US equities 
and CH equities. This was consistent with the 
concern raised during the definition of the 
stress-test scenarios. 

43 Generally during a portfolio stress-test it is 
assumed the portfolio manager has no time to 
react to some market crisis event, or else the 
market crisis results in market illiquidity that 
prevents portfolio asset weights from being 
adjusted. 

44 Rapisarda, F., Brigo, D. and Mercurio, F. 
(2007) ‘Parameterizing correlations: a geometric 
interpretation’, IMA Journal of Management 
Mathematics, Vol. 18, No. 1, pp. 55–73.

45 Which was previously noted not to be positive 
semi-definite and therefore not a valid 
correlation matrix. 

46 Reordering the assets makes no difference to 
the eigenvalues of the matrix, which remains 
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positive semi-definite and a valid correlation 
matrix. The reordered matrix CInitial remains a 
valid correlation matrix, as it could easily have 
been constructed with the assets in that order in 
the first instance. 

47 Which remains not positive semi-definite and 
therefore not a valid correlation matrix. 

48 The interested reader should find that upon 
multiplying this out with its transpose to 
numerical rounding they obtain CInitial .

49 Substitution of the angles into B4 × 4 permits the 
interested reader to recreate U.

50 It can be seen that A is the top-left 3 × 3 elements 
of CTarget.

51 In other words the submatrix must also be 
positive semi-definite. 

52 In this case ‘acceptable’ means that the submatrix  
A is positive semi-definite (and therefore a valid 
correlation matrix) and does not generate complex 
numbers during the Cholesky decomposition. 

53 The full range of applicability of such a 
relationship is not examined here; it is proposed 
only as a reasonable and practical solution to the 
current problem. 

54 Substitution of these angles into B3 × 3 recreates V. 
55 The portfolio asset weights were deemed to be 

unchanged, and as only the correlation matrix has 
been adjusted there is no need to be concerned 
with any potential impact on asset volatilities. 

56 It is worth noting that the above calculation 
of parametric VaR uses the original volatility 

matrix v. If the practitioner wished to use 
some adjusted volatilities in the stress-test 
these could be straightforwardly incorporated 
at this stage. 

57 The reader will recall that, as N&B’s matrix A  
was not positive semi-definite and generated 
a complex number during Cholesky 
decomposition during the first attempt, the 
US equity, Chinese equity correlation was 
modified before proceeding further. During 
this modification, a choice of two correlation 
values was possible, with the value nearest to the 
target being selected. This might be regarded 
as a potential modest development of N&B’s 
approach. 

58 The portfolio 95 per cent monthly parametric 
VaR for the terminal sub-period was calculated 
as VaR% = ∙ −Nσδt1/2 ∙ = 1.64485 × 9.30%  
× 1/12 = 4.42%.

59 Should the reader wish to include adjusted 
volatilities, the appropriate points at which these 
could be incorporated into the calculations have 
been indicated in the sections above. 

60 In this case a multiplier of four times volatility 
was used. 

61 Although the stress test scenarios used only 
explored changes to portfolio correlations, 
without making any adjustments to volatility.

62 Potentially including rescaling volatilities. 
63 As well as level of intellectual comfort. 
64 Here US–UK equity and UK–Chinese equity. 
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APPENDIX A: MODIFICATION OF 
RETURN VECTORS FOLLOWING 
FINGER 
Adjusting the variance-covariance matrix using 
the method proposed by Finger involves changing 
correlations by modifying selected return vectors 
period by period, which are then rescaled if original 
asset variances are to be left unchanged. 

The application of the method proceeded as 
follows. Initially consider the 12-monthly returns on 
the four assets shown in Table 1. As the correlation 
pairs to be adjusted are UK equity/US equity and 
UK equity/CH equity, returns from three assets 
were to be modified; UK equity, US equity and CH 
equity. The first step was to calculate the average 
period returns for the three assets identified.

 Rave = 
1
3

 (RUK + RUS + RCH)

In the above, Rave is a single-period average return, 
while RUK, RUS and RCH are the returns on UK 
equity, US equity and CH equity, respectively, for the 
same period. Modified period returns for UK equity, 
US equity and CH equity were then constructed as 
weighted averages of Rave and the relevant asset class 
using θ (and requiring that 0 ≤ θ ≤ 1) as

 R′UK = θ Rave + (1 − θ) RUK

 R′US = θ Rave + (1 − θ) RUS

 R′CH = θ Rave + (1 − θ) RCH [F1]

From the above, it can be seen that as θ increases 
towards unity, the period returns on each asset 
approach Rave, with the consequence that their 
correlations would also approach unity. The resulting 
modified period returns are shown in Table 3 using 
θ = 0.6408, together with Rave (at this stage the 
reader is asked to accept the value of θ offered, an 
explanation of how it is obtained follows later).

As a result of applying [F1] to the period returns, 
the volatilities for the modified returns R′UK, etc  
differ from those of RUK, etc. Table 3 shows that  
the annualised volatility for R′UK is σ ′UK = 6.04% 
compared with σUK = 7.55% for RUK, with  
differences also occurring for R′US and R′CH.  
To restore the original asset volatilities, Finger 
suggests normalising the modif ied returns:

 R″UK = R′UK × 
σUK

σ ′UK

 R″US = R′US × 
σUS

σ ′US

 R″CH = R′CH × 
σCH

σ ′CH
 [F2]

The resulting normalised returns appear in  
Table 3, where it can be seen that the asset 
volatilities now match those of the original 
asset data (σ ″UK = σUK, σ ″US = σUS and σ ″CH = σCH). 
Although not included here, should adjusted 
volatilities also be desired in the stress-test, this 
step would be the appropriate place at which to 
introduce them, so that the modif ied returns  
series would then include both adjusted 
correlations and volatilities. 

The value of θ is obtained by completing the  
calculation [F1, F2] with a trial value (say θ = 0.5).  
A correlation matrix can then be constructed 
from either modif ied returns, R′UK, R′US, R′CH, 
or normalised returns R″UK, R″US, R″CH, as the 
normalisation process does not affect the 
correlations. A search algorithm was then used 
to explore trial values of θ until the desired 
correlation target was obtained. 

APPENDIX B: OBTAINING 
CORRELATIVE ANGLES FOLLOWING 
NUMPACHAROEN AND BUNWONG
Following N&B, one commences by defining 
matrix B, with elements

 bij = 
cos θij ⋅  ∏

j − 1
k = 1  sin θik for j = 1 to n − 1 

∏ j − 1
k = 1  sin θik for j = n

.

In the case of a 4 × 4 matrix this gives:

B4 × 4 = 

cos θ11

cos θ21

cos θ31

cos θ41

cos θ12  sin θ11

cos θ22  sin θ21

cos θ32  sin θ31

cos θ42  sin θ41

 

cos θ13  sin θ11  sin θ12

cos θ23   sin θ21  sin θ22

cos θ33   sin θ31  sin θ32

cos θ43   sin θ41   sin θ42

sin θ11  sin θ12  sinθ13

sin θ21  sin θ22  sinθ23

sin θ31  sin θ32  sinθ33

sin θ41  sin θ42  sinθ43

 .
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By setting diagonal angle θii = 0 for all i, B 
simplifies to

B4 × 4 = 

1
cos θ21

cos θ31

cos θ41

0
sin θ21

cos θ32   sin θ31

cos θ42   sin θ41

 

0
0

sin θ31  sin θ32

cos θ43  sin θ41  sin θ42

0
0
0

sin θ41  sin θ42  sin θ43

 .

At this stage, we can note that products of sines and 
cosines will always take values over the range −1 to +1, 
making them suitable for representing correlations. 

Some correlation matrix C is represented as 
the product of a lower triangular matrix and its 
transpose using Cholesky decomposition. Cholesky 
decomposition is valid for Hermitian positive 
definite matrices; as a square symmetric matrix with 
only real entries is Hermitian, it can be applied to 
any correlation matrix. Numerical algorithms are 
available to execute the Cholesky decomposition, 
which would be essential for a portfolio of many 
assets. By Cholesky decomposition our correlation 
matrix may be decomposed into a lower triangular 
matrix and its transpose C = UUT.

The next stage is to set U = B4 × 4 above and to 
solve for the correlative angles:

U = 

1
cos θ21

cos θ31

cos θ41

0
sin θ21

cos θ32  sin θ31

cos θ42  sin θ41

 

0
0

sin θ31  sin θ32

cos θ43  sin θ41  sin θ42

0
0
0

sin θ41  sin θ42  sin θ43

 .

This results in a matrix of correlative angles:

θ4 × 4 = 

0
θ21

θ31

θ41

0
0

θ32

θ42

0
0
0

θ43

0
0
0
0

 .

Changes to correlative angles will always result in 
trigonometrical functions (and their products) taking 
values over the range −1 to +1. Thus some matrix of 
revised correlative angles θ can be created, resulting 
in a revised lower triangular matrix U. The product 
of U and its transpose will then yield a Hermitian 
positive definite matrix, which has the necessary 
properties for a correlation matrix. 

APPENDIX C: EXAMPLE OF NAÏVE 
APPLICATION OF CHOLESKY 
DECOMPOSITION TO NON-POSITIVE 
SEMI-DEFINITE MATRIX
If one were to naively proceed with Cholesky 
decomposition on the non-positive semi-definite 
matrix A and to re-express A = VV T, one obtains

V = 
1

0.89
0.68

0
0.4560

−1.8360

0
0

1.6832i
 .

The Cholesky decomposition has inconveniently 
generated a complex number i = −1  in element 
V33. Rather than glossing over this (for example, 
by conveniently selecting less challenging target 
correlations) the main text explores what a 
practitioner might do when faced with this sort of 
situation arising from real-world data. 

The practitioner might, however, worry that there 
is an error in the Cholesky decomposition, but this is 
not the case. Due to the lower diagonal structure of 
V, most of the elements of VV T that involve V33 are 
multiplied by zero. The only one that is not is the 
bottom-right ‘33’ element, which is calculated as

V31(V
T )13 + V32(V

T )23 + V33(V
T )33 = 0.682  

 + (−1.83597)2 + (1.68321i)2 = 1.

Conveniently, the only appearance of i is squared 
when reconstructing matrix A.

More serious issues remain, however; N&B’s 
method requires that A is a valid correlation 
matrix, which as it stands it is not, as it is not 
positive semi-definite. Further, the next stage 
would be to express matrix V in terms of 
correlative angles using trigonometrical functions 
— a step one would not wish to take when 
complex numbers are involved.1 
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APPENDIX D: EXPLORATION OF 
AN EXPRESSION FOR LINKED 
CORRELATIONS
Consider a problem with three assets, denoted  
‘asset 1’, ‘asset 2’ and ‘asset 3’, having correlations  
between them ρ12, ρ23, ρ13, where the subscripts 
denote the assets. Let us say that we have the 
correlations between assets 1 and 2 (ρ12), and assets 1  
and 3 (ρ13) that we wish to target, and desire to 
determine a ‘sensible’ estimate for the correlation 
between assets 2 and 3 (ρ23). By ‘sensible’ we note 
that we are motivated by the example in the main text,  
and desire a value of ρ23 that will ensure that the 
resulting matrix is positive semi-definite (and 
therefore a valid correlation matrix) and that 
we avoid obtaining a complex value for element 
‘33’ during a Cholesky decomposition of a 3 × 3 
correlation matrix based on the above correlations. 

Determination of a suitable expression linking 
the correlations ρ23 = f(ρ12, ρ13) can be derived 
either by consideration of the eigenvalues, or else 
the conditions necessary within the Cholesky 
decomposition in order to avoid generation of a 
complex number. A geometrical interpretation of the 
resulting expression is also offered.

Eigenvalues
Define 3 × 3 correlation matrix

C3 × 3 = 

1
ρ12
ρ13

ρ12
1

ρ23

ρ13
ρ23
1

 .

This will have eigenvalues, λ satisfying 

det(C3 × 3 − λI) = 0,

Here I is the identity matrix and ‘det’ signifies 
taking the determinant. Thus,

 det(C3 × 3 − λI) = det 
1 − λ
ρ12
ρ13

ρ12
1 − λ
ρ23

ρ13
ρ23

1 − λ
 = 0.

Multiplying this out gives:

ρ13 ρ12 ρ23 − ρ13(1 − λ)  + ρ23 ρ12 ρ13 − ρ23(1 − λ)  

 + (1 − λ) (1 − λ)2 − ρ12
2  = 0,

2ρ12 ρ13 ρ23 + (1 − λ)3 − (1 − λ)ρ12
2  

 − (1 − λ)ρ13
2  − (1 − λ)ρ2

23 = 0.

Collect terms in ρ23 to get

− (1 − λ)ρ23
2  − 2ρ12 ρ13 ρ23  

 + (1 − λ) ((1 − λ)2 − ρ12
2 − ρ13

2 ) = 0.

This quadratic in ρ23 has solutions

ρ23 = 
ρ12 ρ13  ρ12

2  ρ13
2  + (1 − λ)2 (1 − λ)2 − ρ12

2 − ρ13
2

(1 − λ)
 .

Now seek a value of ρ23 = f (ρ12, ρ13) with a zero 
eigenvalue, thus λ = 0, and

ρ23 = ρ12 ρ13  ρ12
2  ρ13

2  + 1 − ρ12
2 − ρ13

2 .

Factorising the term inside the square-root gives:

 ρ23 = ρ12 ρ13  (1 − ρ12
2)  ×  (1 − ρ13

2). [D1]

For the example used in the main text, let us say 
asset 1 is UK equity, asset 2 is US equity and asset 3 
is Chinese equity; then ρ12 = 0.89 (UK–US),  
ρ13 = 0.68 (UK–China) and we desire an estimate  
for ρ23 (US–China) that will result in a zero 
eigenvalue. Thus

ρ23  = 0.68 × 0.89 ± 1 − 0.682 × 1 − 0.892  

= 0.6052 ± 0.1118 = 0.2709 or 0.9395. 

From a mathematical perspective, either of the 
two values above would generate a zero eigenvalue; 
however, as mentioned in the main text, the value 
ρ23 = 0.2709 lies closer to the initial correlation 
matrix and, as it was not desired specifically to target 
ρ23 during the stress-test, it would appear reasonable 
to select the solution closer to the initial correlation 
value between US and Chinese equities of −0.23. 

As indicated in the main text, the resulting 
matrix is

C3 × 3 = 

1
ρ12
ρ13

ρ12
1

ρ23

ρ13
ρ23
1

 = 
1

0.89
0.68

0.89
1

0.2709

0.68
0.2709

1
 .

This has eigenvalues of 0, 0.7398 and 2.260, 
meaning that it is positive semi-definite and a valid 
correlation matrix.
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Cholesky decomposition
Define 3 × 3 correlation matrix, as before:

C3 × 3 = 
1

ρ12
ρ13

ρ12
1

ρ23

ρ13
ρ23
1

 .

As C is square symmetric with real elements it is 
Hermitian and so can be expressed via Cholesky 
decomposition as the product of a lower triangular 
matrix and its transpose.

C = UUT = 
U11
U21
U31

0
U22
U32

0
0

U33

 
U11
0
0

U21
U22
0

U31
U32
U33

 .

For given ρ12 and ρ23, we wish to explore conditions 
to ensure that U33 is a real number. Thus:

U 2
11

U21U11
U31U11

U21U11
U 2

21 + U 2
22

U31U21 + U32U22

U31U11
U31U21 + U32U22
U 2

31 + U 2
32 + U 2

33

 = 
1

ρ12
ρ13

ρ12
1

ρ23

ρ13
ρ23
1

 .

For any correlation matrix the leading diagonal 
elements have value unity, so U11 = 1, U21 = ρ12 and 
U31 = ρ13. Also for C33,

U 2
31 + U 2

32 + U 2
33 = 1.

For U33 to be real, require U 2
33 ≥ 0, to avoid taking 

the square root of a negative value.

U 2
33 = 1 − U 2

31 − U 2
32 = 1 − ρ 2

13 − U 2
32 ≥ 0

Proceeding
1 − ρ 2

13 − U 2
32 ≥ 0,

ρ 2
13 + U 2

32 ≤ 1,

U32 ≤ ±  1 − ρ13
2 .

To link the above condition on U32 to ρ23 we use 
U31U21 + U32U22 = ρ23 as follows:

U32 = 
ρ23

 − U31U21

U22

 ,

U32 = 
ρ23

 − ρ13 ρ12

U22

.

Now require an expression for U22, which we obtain 
from U 2

21 + U 2
22 = 1, as

U 2
22 = 1 − U 2

21,

U22 = ±  1 − ρ2
12 .

Considering only the boundary of the inequality

U32 = ±  1 − ρ2
13 ,

ρ23 − ρ13 ρ12

±  1 − ρ2
12

 = ±  1 − ρ2
13 ,

 ρ23 = ρ13 ρ12 ±  1 − ρ2
13  × 1 − ρ2

12 . [D2]

This is the identical result to [D1], although in this 
case it has been demonstrated that the resulting value 
of ρ23 will not result in a complex value of U33 in 
the Cholesky decomposition. From a mathematical 
perspective, either of the two values above generates 
real U33; however, as before, the value ρ23 = 0.2709 
lies closer to the initial correlation matrix. 

Geometrical interpretation
A geometrical interpretation of [D1] and [D2] is also 
possible.2

Consider correlation vectors:

a  = 
ρ12

1 − ρ2
12

 and b  = 
ρ13

1 − ρ2
13

 .

These can be interpreted as shown in Figure D1, 
being vectors of unit length making angles θ12 
and θ13, respectively, with the x-axis and having 
projections ρ12 and ρ13 onto the x-axis. We note that 
by Pythagoras, the projections onto the y-axis can be 
obtained from

ρ2
12 + (Δy)2 = 12,

Δy = 1 − ρ2
12 .

With a similar calculation for ρ13. Thus we obtain 
both x and y-components of the vectors a  and b .  
We see that these vectors are just representations 
in the (x, y) plane of the correlation as unit length 
vectors around a circle.
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The projection of b  onto a  is given by the scalar 
(dot) product. We also consider the possibility of 
ref lection of one or other vector in the x-axis so 
that its y-coordinate is negative by using both the 
positive and negative roots:

a  = 
ρ12

±  1 − ρ2
12

 and b  = 
ρ13

±  1 − ρ2
13

 .

The expression for the scalar product of the above is

 a  ⋅ b  = ρ12 ρ13 ± 1 − ρ2
12  × 1 − ρ2

13 . [D3]

This is identical to [D1] and [D2], demonstrating that 
the expression for ρ23 is geometrically the projection 
of correlation vector b  onto a . The ref lection in the 
x-axis permits two roots to the expression. 

As the correlation vectors a  and b  are both of unit 
length, the degree of correlation is captured by the 
angle between the vectors. If the vectors are orthogonal 
there is no correlation between them; similarly with 
zero angle between them they are perfectly correlated. 

Another expression for the scalar product is  
a  ⋅ b  = ab cos θ , where θ is the angle between the 

correlation vectors. These angles (θ12 and θ13) can be 
readily explored using trigonometry.

tan θ12 = 
±  1 − ρ2

12

ρ12
 and tan θ13 = 

±  1 − ρ2
13

ρ13
.

The ‘±’ indicates the possibility of ref lection in the 
x-axis. Considering the projection of vector b  onto  
a , we know that the scalar lengths of each of the 
vectors is unity. Combining [D1] and [D2]:

ρ23 = a  ⋅ b  = 1 × 1 × cos θ = cos θ .

Recalling that θ is the angle between θ12 and θ13. 
Applying this to the example in the main text with 
ρ12 = 0.89 (UK–US), and ρ13 = 0.68 (UK–China), we 
obtain

tan θ12 = ±0.51232 and tan θ13 = ±1.078253,

θ12 = ±0.47345 radians and θ13 = ±0.82303 radians.

The differences between the angles can be either

θ  = 0.82303 − 0.47345 = 0.34958 radians,
or

θ  = 0.82303 − (−0.47345) = 1.29648 radians.

Figure D1: Correlation vectors and angles. The correlation values ρ12,ρ13 are the projections of the vectors onto the x-axis
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This gives cos θ = 0.9395 or 0.2709, the same result as 
before. In degrees these angles evaluate at

θ12 = 
0.47345

2π  × 360° = 27.13°,

θ13 = 
0.82303

2π  × 360° = 47.16°,

θ = 
0.34958

2π  × 360° = 20.03°, and

θ = 
1.29648

2π  × 360° = 74.28°.

Which agree to rounding accuracy.

Appendix references
1 Actually expressions based on Euler’s  

formula, eiθ = cos θ + i sin θ can be used to  
proceed with complex angles; however,  
this is not explored in the current  
paper.

2 An extensive and more theoretical discussion  
of the geometrical interpretation of correlations 
is given in Rapisarda F., Brigo D. and  
Mercurio F. (2007) ‘Parameterizing 
correlations: a geometric interpretation’, IMA 
Journal of Management Mathematics, Vol. 18,  
No. 1, pp. 55–73.


